
Intrusion Protection against SQL Injection
And Cross Site Scripting Attacks

 Using a Reverse Proxy

Tanmay S. Mule , Aakash S. Mahajan, Sangharatna Kamble, Omkar Khatavkar

Dept. of Computer Engineering, ISB&M School of Technology,Nande, Pune, India.

Abstract— SQL Injection attacks and Cross-Site Scripting
attacks are the two most common attacks on web application.
Proposed method is a new policy based Proxy Agent, which
classifies the request as a scripted request, or query based
request, and then, detects the respective type of attack, if any
in the request. This method detects both SQL injection attack
as well as the Cross-Site Scripting attacks.
SQL injection vulnerabilities have been described as one of the
most serious threats to the database driven applications. Web
applications that are vulnerable to SQL injection may allow an
attacker to gain complete access to their underlying databases.
A SQL Injection Attack usually starts with identifying
weaknesses in the applications where unchecked users’ input
is transformed into database queries.
Reverse Proxy is a technique which is used to sanitize the
user’s inputs that may transform into a database attack. In
this technique a filter program redirects the user’s input to the
proxy server before it is sent to the application server. At the
proxy server, data cleaning algorithm is triggered using a
sanitizing application.

Keywords— SQL Injection, SQL Attack, Data Sanitization,
Database Security, Security Threats, Cross Site Scripting.

I. INTRODUCTION

In this era where internet has captured the world, level of
security that this internet provides has not grown as fast as
the internet application. Internet has eased the life of human
in numerous ways, but the drawbacks like the intrusions
that are attached with the internet applications sustains the
growth of these applications. One such intrusion is the SQL
Injection Attacks (SQLIA). Since SQLIA contributes 25%
of the total internet attacks, much research is being carried
out in this area. [2]

Now-a-days application-level vulnerabilities have been
exploited with serious consequences: E-commerce sites are
tricked by attackers and they lead into shipping goods for
no charge, usernames and passwords have been cracked,
and confidential and important credentials of users have
been leaked. SQL Injection attacks and Cross-Site Scripting
attacks are the two most common attacks on web
application. [1]
A. Present System in Use:

The glory of internet and its merits are being highly
masked by the drawback associated with it. Of them the
prime issue is internet vulnerability, leading to data
modification and data thefts. Many web applications store
the data in the data base and retrieve and update
information as needed.

B. Flaws in Current System:
Internet is a widespread information infrastructure and an

insecure channel for exchanging information. Web
application security relies on the ability to inspect HTTP
packets to handle threats at Layer-7 of the OSI model.
Attackers are all too familiar with the fact that traditional
perimeter security methods do not stop attacks against Web
applications that are, by nature, designed to allow visitors to
access data that drives the Website. By exploiting simple
vulnerabilities in Web applications, an attacker can pass
through the perimeter security even when the traditional
firewall and IDS systems are in place to protect the
application. Web applications contain rich content to be
transferred from web application to the server site, which
makes the website vulnerable to various types of code
injection attacks. Injection attacks are the result of a Web
application sending untrusted data to the server. [3]

The most common attack occurs from malicious code
being inserted into a string which is sent to the SQL Server
for execution. This attack, known as SQL Injection, allows
the attacker to access data from the database, which can be
stolen or manipulated. Cross-Site Scripting, or XSS, is
another prevailing security flaw that Web applications are
vulnerable to. In an XSS attack, the attacker is able to insert
malicious code into a website. When this code is executed
in a visitor’s browser it can manipulate the browser to do
whatever it wants. Typical attacks include installing
malware, hijacking a user’s session, or redirecting users to
another site. [1]

II. BACKGROUND STUDY

Code Injection is a type of attack in a web application, in
which the attackers inject or provide some malicious code
in the input data field to gain unauthorized and unlimited
access, or to steal credentials from the users account. The
injected malicious code executes as a part of the application.
This results in either damage to the database, or an
undesirable operation on the internet. Attacks can be
performed within software, web application etc, which is
vulnerable to such type of injection attacks. Vulnerability is
a kind of lacuna or weakness in the application which can
be easily exploited by attackers to gain unintended access to
the data [2]. Some common code injection attacks are
HTTP Request Splitting Attacks, SQL Injection Attacks,
HTML Injection Attacks, Cross-Site Scripting, Spoofing,
DNS Poisoning etc.

Tanmay S. Mule et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2846-2850

www.ijcsit.com 2846

III. SYSTEM ARCHITECTURE

The architecture of the system is illustrated in Figure 1.
In a client server model, a reverse proxy server is placed, in
between the client and the server. The presence of the proxy
server is not known to the user. The sanitizing application is
placed in the Reverse proxy server.

Fig. 1 Conceptual Architecture

 A reverse proxy is used to sanitize the request from

the user. When the request becomes high, more reverse
proxy’s can be used to handle the request. This enables the
system to maintain a low response time, even at high load.

The general work of the system is as follows:

1. The client sends the request to the server.
2. The request is redirected to the reverse proxy.
3. The sanitizing application in the proxy server

extracts the URL from the HTTP and the user data from
the SQL statement.

a. The URL is send to the signature check
b. The user data (Using prototype query model) is

encrypted using the MD5 hash.
4. The sanitizing application sends the validated URL

and hashed user data to the web application in the server.
5. The filter in the server denies the request if the

sanitizing application had marked the URL request
malicious.

6. If the URL is found to be benign, then the hashed
value is send to the database of the web application.

7. If the hashed user data matches the stored hash
value in the database, then the data is retrieved and the
user gains access to the account.

8. Else the user is denied access. Figure 2 gives the
flowchart of the system.

A. Injection Detector

A Query Detector is a simple tool which is used to test

the precision of SQL Queries, and detecting malicious
request from user at the web server. It takes request coming
from any user and validates the request before forwarding it
to the web server for further execution and processing.

1) Session Manager
When HTTP request goes to the web server a Session

object for that user is initialized [25], which assign a Session

variable or Token for that particular connection. This session
remains in its active state until the connection remains
active. As soon as the connection is terminated the session
terminates accordingly.

2) Input Valuator
Input Valuator is a key section of Query detector. It

works as a Proxy between Client and the web server and
any request going on the web server is first validated at the
Input_Valuator. It has an attack vector repository consisting
of some special characters (e.g. ' - ;) which are often used in
writing malicious code for SQL Injection attack. It does the
functionality of matching user supplied data in HTTP
request with the text file stored in attack repository. When
user supplied text contain any special symbols which are
present in the repository, it is treated as invalid request by
the Input_Valuator. Execution of that request on the web
server is prevented. If no pattern is matched then that
request is treated as valid and is forwarded to the next
module for filtering the script tags.

Fig. 2 SQL Injection Detector

B. Script Detector
 Script detector is used to detect the malicious script
embedded in the web application. It sanitizes HTML input
before executing on the web server. This sanitization process
removes all the invalid and unwanted tags from the user
input and then encodes the remaining input into simple text
thus preventing the execution of any malicious script. The
block diagram of Script Detector shown in figure 4.3 has
different blocks which prevent the Cross-Site Scripting
attack.

1) HTML Sanitizer
 HTML Sanitizer removes unsafe tags and attributes
from HTML code. . It takes a string with HTML code and
strips all the tags that do not make part of a list of safe tags.
The list of safe tags is defined according to the whitelist
tags list given by Open Web Application Security Project
(OWASP) [20]. There are some functions to dis-allow
unsafe or forbidden tags like script, style, object, embed,
etc. It can also remove unsafe tag attributes, such as those

Tanmay S. Mule et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2846-2850

www.ijcsit.com 2847

that define JavaScript code to handle events. The links href
attributes also gets special treatment to remove URLs that
trigger JavaScript code execution and line breaks. The list
of all the allowed tags and forbidden tags is given in Table
2. The sanitization process starts with breaking the HTML
string in tokens; this functionality is handled by HTML
tokenizers.

2) Tokenizer
 Tokenizer divides the HTML text within user input into
tokens. A token is a single atomic unit of supplied text. In
proposed method a token is be one of the following: tag
start (), comment (), tag content (“text”), a tag closing (). As
a result of this a list of tokens will be created, and then each
and every token in this list is matched with the whitelist
tags and forbidden tags shown in Table 2. And then the
HTML Sanitizer forward’s the user request to HTML
Encoder.

3) HTML Encoder
 HTML encoder performs the character escaping. It uses
the HtmlEncode Method of ASP.NET to encode the user
input. The HtmlEncode method applies HTML encoding to
a string to prevent a special character to be interpreted as an
HTML tag. This method is useful for displaying text that
contain "special" HTML characters such as quotes, angular
brackets and other characters by the HTML language. Table
1 show a list of some of these special characters and their
equivalent encoded value, which is used by the HTML
Encoder to encode the input.

4) Script Pattern
 This contains all the tags and patterns that are used to
match with the tokens which are formed by the tokenizer. It
contains list of all the forbidden tags, allowed tags, tag
starting pattern, tag closing pattern, comment patterns, style
pattern, URLpattern etc. The list of all patterns used by this
module is shown in Table 2.

5) Pattern Matcher
 The functionality of this module is just to take the input
from the list of tokens and match them with the Script
Patterns. All the rejected tags are stored in the invalid tags
list and all the accepted tags are forwarded to the HTML
Encoder for encoding.

Fig .3 Cross Site Scripting

IV. SYSTEM IMPLEMENTATION

 We implemented the prototype version of CIDT as a
Windows .NET application in C#. We choose .NET
because in the literature survey we found that all the
categories of code injection attacks were not succeeded on
the application build using Java. The web applications on
which attacks are performed and tested is implemented
using simple web technologies like HTML, CSS, and
Active Server Pages. Query Detector and Script Detector
are implemented separately and then they are combined
together to form a Code Injection Detection Tool.
Algorithm 4.1 and Algorithm 4.2 are used for implementing
the modules.
A web application having login page, a text file containing
some special characters and a database to store the user’s
login information is required for implementing Algorithm
4.1. It is used for preventing user from SQL Injection
attack.

Algorithm 4.1 Query Detector

 \begin {SQL_Detect}
Step 1: Accept u_name, u_pass in text from users.
Step 2: Start the Session for current u_name.
Step 3: Forward u_name to FileInput.aspx.
Step 4: Set attack False;
Step 5: Repeat <for each line of input>
Until { (line equal to Test.txt) and not equal to Null }
\End While
Step 6: Set line String Pattern;
Step 7: If { u_name.contains(line)}
Set attack true;
\End If
Step 8: If { attack equals to true }
Set Valid false;
Else
Set Valid true;
\End If
Step 9: If { Valid is equal to false }
Discard U_name from entering into the database.
Else
Allow Connection to database.
\End

User’s request through a web application is forwarded
to the Query Detector. Algorithm 4.1 then matches the
content of user request with the text file for any special
character. If any special character gets matched, the
request is said to an invalid request and its execution is
stopped. Otherwise it is allowed to be executed.

Algorithm 4.2 Script Detector

Step 1: Take user input in the form of any HTML text
having scripts, tags, links, or urls.
Step 2: Tokenize the input code.
Step 3: Store all the tokens in a list.
Step 4: Having the list of token, check for every single
token whether it is acceptable or not.
Repeat {for every token check it with a regular
expressions}

Tanmay S. Mule et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2846-2850

www.ijcsit.com 2848

a) If token is a comment discard it.
b) If { token is a start tag }
Extract the tags and all its attributes
If { Forbidden Tag }
Remove the tag.
\End if
If { Allowed Tag } then do
Extract every attribute of the tag.
i) Check the “href” and “src” for admitted tags.(a, img,
embed)
ii) Check the “style” attribute and discard it.
iii) Remove every “on…..” attribute
(onclick,onmouseover…)
iv) Encode attribute value for unknown ones.
v) Push the tag on the stack of open tags.

Else
The tag is unknown and will be removed.
\End If
If { token is a end tag } then do
Extract the tag
Check whether the corresponding tag is already open.
Else
It is not a tag encode it.
\End If
\End While

Algorithm 4.2 describes the process of sanitization
Sanitization is a process of filtering html content presen
in the input request. The function of sanitizer is to
tokenize the user request and collects the list of tokens
Each token is matched with the script pattern using
regular expressions. Unwanted or invalid tokens ar
removed from the user request and then the system
encodes it before forwarding to the web server.

V. EVALUATION

This system was tested on 4 open source projects. The
open source projects that was considered for this study, was
taken from gotocode.com. The four projects that were taken
into study were Online Bookstore, Online portal, Employee
directory, registration form. We used Burp suite [25] as an
attacking tool. Our system was able to detect all the
intrusions injected by burp suite and was able to achieve
100% detection rate. The total number of SQL injections by
the Burp suite and the total number of detections by our
system defining the detection rate is stated in Table 1.
Figure 3 and Figure 4 shows the response of the system
when a malicious input is provided in the input form.

Fig. 4 Malicious input provided to the Application.

TABLE I DETECTION RATE

VI. ANALYSIS AND RESULT

We have analyzed our system and other methodologies
that are used to curb SQLIA. The detailed analysis is shown
in Table 2. The system was run under light load condition,
medium load condition and heavy load condition. The time
taken for the response with our system’s Intrusion
Prevention proxy (IP proxy) and without the Intrusion
Prevention proxy was noted in Nanoseconds. Under Light
load condition 5 requests from client system was send to the
server. Low load

Under medium load 50 requests was send from client
system using threads. For heavy load 1000 requests was
send using client system. The time taken did not show
much difference for light load and medium load condition.
For heavy load condition, there was a slight difference in
nanoseconds.

TABLE II ANALYSIS OF METHODOLOGIES CURBING SQLIA

Methodology
Change in

source Code
Detection/Mitigation of

attack

WAVES[4] Not necessary
Automatized/ report

generated

JDBC-
Checker[5]

Needed for
automatic

prevention of
attack.

Can be automatized.

AMNESIA[6] Not necessary Fully automatized

SQLGuard[7] Necessary Fully automatized

SQLCheck[8] Necessary Partially automatized

WebSSARI[9] Necessary Partially Automatized

Livshits and
Lam[10]

Not necessary Manual assistance needed

Security
Gateway[11]

Not needed
Manual detection /

automatized Mitigation

SQLRand[12] Necessary Fully automatized

SQL-IDS Not necessary Fully Automatized

Idea Not necessary Only detection of attacks

COMPVAL Not necessary Fully automated

Proposed DC
algorithm

Not necessary Fully automated

The system using the proxy server protection was
responding a little slower than the other system, but had full
protection against SQL injection attacks. If we increase the
number of proxy server to four then the server was able to
handle the request with an increased pace. We have not yet
worked on optimization of the system. We believe, after
optimization of the system, the performance will improve.

Web
Application

No. of SQL
Injection Attacks

No. of
Detections

Detection
Rate

Portal 276 276 100%

Employee
Directory

238 238 100%

Book store 197 197 100%

Registration
Form

419 419 100%

Tanmay S. Mule et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2846-2850

www.ijcsit.com 2849

VII. CONCLUSIONS

The novel system with intrusion prevention proxy has
proved to be effective in detecting the SQL injection attacks
and cress site scripting attacks and preventing the attacks
from penetrating the web application. This system does not
do any changes in the source code of the application. The
detection and mitigation of the attack is fully automated. By
increasing the number of proxy servers the web application
can handle any number of requests without obvious delay in
time and still can protect the application from SQL
injection attack. In future work, the focus will be on
optimization of the system and removing the vulnerable
points in the application itself, in addition to detection and
studying alternate techniques for detection and mitigation
of SQL injection attacks and cross site scripting attacks.

REFERENCES
[1] David Litchfield, (2005) “Data-mining with SQL Injection and

Inference”, Next Generation Security software Ltd., White Paper.
[2] Allaire Security Bulletin, (1999) “Multiple SQL statements in

dynamic queries”.
[3] Chip Andrews, “SQL Injection FAQs”,

http://www.sqlsecurity.com/FAQs/SQLInjectionFAQ/tabid/56/Defa
ult.aspx

[4] Y.Huang, F. Huang, T.Lin and C.Tsai, (2003) “Web Application
Security Assessment by Fault Injection and Behavior Monitoring”,
Proc. International World Wide Web Conference ’03, pp. 148 -

[5] C.Gould, Z.Su and P.Devanbu, (2004) “JDBC Checker: A Static
Analysis Tool for SQL/JDBC Application”, Proc. International
Conference on Software Engineering ‘04, pp.697-698.

[6] W. G. Halfond and A. Orso, (2005) “AMNESIA: Analysis and
Monitoring for NEutralizing SQLInjection Attacks”, Proc. ACM
International Conference on Automated Software Engineering ’05,
pp. 174-183.

[7] Gregory Buehrer, Bruce W. Weide and Paolo A. G. Sivilotti, (2005)
“Using Parse Tree Validation to Prevent SQL Injection Attacks”,
Proc. International Workshop on Software Engineering and
Middleware, pp. 106-113.

[8] Zhendong Su and Gary Wassermann, (2006) “The Essence of
Command Injection Attacks in Web Applications”, Proc. ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages ’06, pp.372-382.

[9] Y.Huang, F.Yu, C. Hang,C.H. Tsai, D.T.Lee and S.Y.Kuo, (2004)
“Securing Web Application Code by Static Analysis and Runtime
Protection”, Proc. International World Wide Web Conference ’04,
pp. 40-52.

[10] V.B. Livshits and M.S. Lam, (2005) “Finding Security Errors in
Java Programs with Static Analysis”, Proc. Usenix Security
Symposium ‘05, pp. 271-286.

[11] D.Scott and R.Sharps, (2002) “Abstracting Application-level Web
Security”, Proc. International Conference on the World Wide Web
‘02, pp. 396-407.

[12] S.W. Boyd and A.D. Keromytis, (2004) “SQLrand: Preventing SQL
Injection Attacks”, Proc. 2nd Applied Cryptography and Network
Security (ACNS) Conference, pp. 292-302.

Tanmay S. Mule et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2846-2850

www.ijcsit.com 2850

